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Abstract

By determining what added assumptions would suffice to make the logical form of a sen-
tence in natural language provable, abductive inference can be used in the interpretation
of sentences to determine what information should be added to the listener’s knowledge,
i.e., what he should learn from the sentence. This is a comparatively new application of
mechanized abduction. A new form of abduction—least specific abduction—is proposed as
being more appropriate to the task of interpreting natural language than the forms that
have been used in the traditional diagnostic and design-synthesis applications of abduction.
The assignment of numerical costs to axioms and assumable literals permits specification
of preferences on different abductive explanations. A new Prolog-like inference system that
computes abductive explanations and their costs is given. To facilitate the computation of
minimum-cost explanations, the inference system, unlike others such as Prolog, is designed

to avoid the repeated use of the same instance of an axiom or assumption.

1 Introduction

We introduce a Prolog-like inference system for computing minimum-cost abductive ex-
planations. This work is being applied to the task of natural-language interpretation, but
other applications abound. Abductive inference is inference to the best explanation. The
process of interpreting sentences in discourse can be viewed as the process of generating
the best explanation as to why a sentence is true, given what is already known [8]—that is,
determining what information must be added t;a the listener’s knowledge (what assumptions
must be made) for him to know the sentence to be true.!

To appreciate the value of an abductive inference system over and above that of a merely
deductive inference system, consider a Prolog specification of graduation requirements (e.g.,

to graduate with a computer science degree, one must fulfill the computer science, mathe-

! Alternative abduclive approaches to natural-language interpretation have been proposed by Charniak [3]

and Norvig [10].



matics, and engineering requirements; the computer science requirements can be satisfied

by taking certain courses, etc.) as an example of a deductive-database application [9]:

csReq <- basicCS, mathReq, advancedCS, engReq, natSciReq.
engReq <- digSys.

natSciReq <- physicsI, physicsII.

natSciReq <- chemI, chemII.

natSciReq <- bioI, bioIl.

After adding facts about which courses a student has taken, such a database can be
queried to ascertain whether the student meets the requirements for graduation. Evaluating
csReq in Prolog will result in a yes or no answer. However, standard Prolog deduction
cannot deternine what more must be done to meet the requirements if they have not
already been fulfilled; that would require analysis to find out why the deduction of csReq
failed.

This sort of task can be accomplished by abductive reasoning. Given what is known
in regard to whicll courses have been taken, what assumptions could be made to render

provable the statement that all graduation requirements have been met?

2 Three Abduction Schemes

We will consider here the abductive explanation of conjunctions of positive literals from
Horn clause knowledge bases. An explanation will consist of a substitution for variables in
the conjunction and a set of literals to be assumed. In short, we are developing an abductive
extension of pure Prolog.

The general approach can be characterized as follows: when trying to explain why Q(a)
is true, iypothesize P(a) if P(z) D @(z) is known.

The requirement that assumptions be literals does not permit us to explain @(¢) when
P(a) is known by assuming P(z) D Q(z), or even P{a) D Q(a). We do not regard this as
a limitation in tasks like diagnosis and natural-language interpretation. Some other tasks,
such as scientific-theory formation, could be cast in terms of abductive explanation when

the assumptions take these more general forms.



We want to include the possibility that Q(«) can be explained by assuming Q(a). As
later examples will show, this is vital in the natural-language interpretation task.

Consider again the example of the deductive database for graduation requirements. All
the possible ways of fulfilling the requirements can be obtained by backward chaining from

csReq:

<- csReq.

<- basicCS, mathReq, advancedCS, engReq, natSciReq.

<- basicCS, mathReq, advancedCS, engReq, physicsI, physicsII.
<- basicCS, mathReq, advancedCS, engReq, chemI, chemII.

<- basicCS, mathReq, advancedCS, engReq, bioI, bioII.

<- basicCS, mathReq, advancedCS, digSys, natSciReq.

<~ basicCS, mathReq, advancedCS, digSys, physicsI, physicsII.
<- basicCS, mathReq, advancedCS, digSys, chemI, chemII.

<- basicCS, mathReq, advancedCS, digSys, bioI, bioIl.

Eliminating from any such clause those requirements that have been met results in a list
that, if met, would result in fulfilling the graduation requirements. Different clauses can be
more or less specific about how the remaining requirements must be satisfied. If the student
lacks only Physics II to graduate, the statements that he can fulfill the requirements for
graduation by satisfying physicsII, natSciReq, or (rather uninformatively) csReq can all
be derived by this backward-chaining scheme.

The above clauses are all possible abductive explanations for the graduation require-
ments’ being met.

In general, if the formula ¢ A --- A @, is to be explained or abductively proved, the
substitution [of values for variables] § and the assumptions Py, ..., P, would constitute
one possible explanation if (P A---A Pp) D (€18 A ---AQ,0) is a consequence of the
knowledge base.

If, in the foregoing example, the student lacks only Physics II to graduate, assuming
physicsII then makes csReq provable.

If the explanation contains variables (for example, if P(z) is an assumption used to

explain @Q(z)), the explanation should be interpreted as neither to assume P(z) for all



(i.e., assume Yz P(z)) nor to assume P(z) for some unspecified z (i.e., assume 3z P(z)), but
rather that, for any variable-free instance ¢ of z, if P(1) is assumed, then Q(?) follows.

It is a general requirement that the conjunction of all the assumptions made be con-
sistent with the knowledge base. (In the natural-language interpretation task, the validity
of rejecting assumptions that are inconsistent with the knowledge base presupposes that
the knowledge base is correct and that the speaker of the sentence is neither mistaken nor
lying.)

Prolog-style backward chaining, with an added factoring operation and without the
literal ordering restriction (so that any, not just the leftmost, literal of a clause can be
resolved on), is capable of generating all possible explanations that are consistent with the
knowledge base. That is, every possible explanation consistent with the kuowledge base is
subsumed by an explanation that is generable by backward chaining and factoring.

It would be desirable if the procedure were guaranteed to generate no explanations
that are inconsistent with the knowledge base. However, this is impossible; counsistency
of explanations with the knowledge base must be checked outside the abductive-reasoning
inference system. (Not all inconsistent explanations are generated: the system can generate
only those explanations that assume literals that can be reached from the initial formula by
backward chaining.) Determining consistency is undecidable in general, though decidable
subcases do exist, and many explanations can be rejected quickly for being inconsistent with
the knowledge base. For example, assumptions can be readily rejected if they violate sort or
ordering restrictions, e.g., assuming woeman(John) can be disallowed if man(.John) is known
or already assumed, and assuming & < @ can be disallowed if ¢ < & is known or already
assumed. Sort restrictions are particularly effective in eliminating inconsistent explanations
in natural-language interpretation. We shall not discuss the consistency requirement further;
what we are primarily concerned with liere is the process of generating possible explanations,
in order of preference according to our cost criteria, not with the extra task of verifying
their consistency with the knowledge base.

Obviously, any clause derived by backward chaining and factoring can be used as the list



of assumptions to prove the correspondingly instantiated original clause abductively. This
can result in an overwhelming number of possible explanations. Various abductive schemes
have been developed to limit the number of acceptable explanations.

What we shall call most specific abduction has been used particularly in diagnostic
tasks. In explaining symptoms in a diagnostic task, the objective is to identify causes that,
if assumed to exist, would result in the symptoms. The most specific causes are usually
sought, since identifying less specific causes may not be as useful.

What we shall call predicate specific abduction has been used particularly in planning
and design-synthesis tasks. In generating a plan or design by specifying its objectives and
ascertaining what assumptions must be made to make the objectives provable, acceptable
assumptions are often expressed in terms of a prespecified set of predicates. In planning,
for example, these might represent the set of executable actions.

We consider what we will call least specific abduction to be especially well suited to
natural-language-interpretation tasks. Given that abductive reasoning has been used mostly
for diagnosis and planning, and that least specific abduction tends to produce what would
be considered frivolous results for such tasks, least specific abduction hias been little studied.
Least specific abduction is used in natural-language interpretation to seek the least specific
assumptions that explain a sentence. More specific explanations would unnecessarily and

often incorrectly make excessively detailed assumptions.

2.1 Most Specific Abduction

Resolution-based systems for abductive reasoning applied to diagnostic tasks [11,4,5] have
favored most specific explanations by stipulating that only pure literals (those that can-
not be resolved with any clause in the knowledge base), which are reached by backward-
chaining deduction from the formula to be explained, be adoptable as assumptions. For
causal-reasoning tasks, this eliminates frivolous and unhelpful explanations for “the watch
is broken” such as simply noting that the watch is broken, as opposed to, perhaps, the main-

spring’s being broken. The explanations can be too specific. In diagnosing the failure of a



computer system, most specific abduction could never merely report the failure of a board if
the knowledge base has enough information for the board’s failure to be explained—possibly
in many alternative, inconsistent ways—by the failure of its components.

Besides sometimes providing overly specific explanations (discussed further in Section 2.3),
most specific abduction is incomplete—it does not compute all the reasonable most specific
explanations.

Consider explaining instances of the formula P(z) A Q(z) with a knowledge base thal
consists of P(a) and Q(b). Most specific abduction’s backward chaining to sets of pure
literals makes P(c) A Q(¢) explainable by assuming P(c) and Q(¢) (both literals are pure),
but P(z) A Q(z) is explainable only by assuming P(b) or Q(a), since P(z) and Q(z) are
not pure. The explanation that assumes P(c¢) and Q(c), or any value of z other than @ or
b, to explain P(z) A Q(z) will not be found.

Thus, most specific abduction does not “lift” properly from the case of ground (variable-
free) formulas to the general case (this would not be a problem if we restricted ourselves to
propositional-calculus formulas). A solution would be to require that all generalizations of
any pure literal also be pure. This too is often impractical, since purity of P(c) in the above
example would require purity of P(x), which is inconsistent with the presence of P(a) in
the knowledge base.

A special case of the requirement that generalizations of pure literals be. pure would be
to have a set of predicates that do not occur positively (i.e., they appear only in negated
literals) in the knowledge base. But the case of a set of assumable predicate symbols is
handled more generally, i.e., without the purity requirement, by predicate specific abduction
(see Section 2.2). This is consistent with much of the practice in diagnostic tasks, where

causal explanations in terms of particular predicates, such as Ab, are often sought.

2.2 Predicate Specific Abduction

Resolution-based systems for abductive reasoning applied to design-synthesis and planning

tasks [6] have favored explanations that are expressed in terms of a prespecified subset of



the predicates, namely, the assumable predicates.
In explaining P(z)AQ(z) with a knowledge base that consists of P(e) and Q(b), predicate
specific abduction would offer the following explanations: (1) @Q(b), if P is assumable,

(2) P(a), if Q is assumable, along with (3) P(z) A Q(z), if both are assumable.

2.3 Least Specific Abduction

The criterion for “best explanation” that must be applied in natural-language interpretation
differs greatly from most specific abduction for diagnostic tasks. To interprel the sentence
“the watch is broken,” the conclusion will likely be that we should add to our knowledge
the information that the watch (i.e., the one currently being discussed) is broken. The
explanation that would be frivolous and unbelpful in a diagnostic task is just right for
sentence interpretation. A more specific causal explanation, such as the mainspring's being
broken, would be gratuitous.

Associating the assumability of a literal with its purity as most specific abduction does
yields not only causally specific explanations, but also taxonomically specific expla,nations._
With axioms like mercury(z) D liquid(z), water(z) D liquid(z), explaining liquzd(a),
when liquid(a) cannot be proved, would require the assumption that @ was mercury, or
that it was water, and so on. Not only are these explanations more specific than the only
fully warranted oune that ¢ is simply a liquid, but none may be correct, for example, if
is actually milk, but milk is not mentioned as a possible liquid. Most specific abduction
thus assumes completeness of the knowledge base with respect to causes, subtypes, and so
.on. The purity requirement may make it impossible to make any assumption at all. Many
reasonable axiom sets contain axioms that make literals, which we would sometimes like to
assume, impure and unassumable. For example, in the presence of parent(z,y) D child(y,z)
and child(z,y) D parent(y, z), neither child(a,b) nor parent(¥,a) could be assumed, since
neither literal is pure.

We note that assuming any literals other than those in the original formula generally

results in more specific (and thus more likely to be wrong and riskier) assumptions. When



explaining R with P D R (or P A Q D R) in the knowledge base, either R or P (or P and
(2) can be assumed to explain E. Assumption of R, the consequent of an implication, in
preference to antecedent P (or P and @), results in the fewest consequences. Assuming the
antecedent may result in more consequences, e.g., if other rules like P O 5 are present.

Predicate specific abduction is not ideal for natural-language interpretation either, since
there is no easy division of predicates into assumable and nonassumable ones so that those
assumptions that can be made will be reasonably restricted. Most predicates must be
assumable in some circumstances, e.g., when certain sentences are being interpreted, but in
many other cases should not be assumed.

Least specific abduction, wherein a subset of the literals asked to be proven must be
assumied, conies closer to our ideal of the right method of explanation for natural-language
interpretation. Under this model, a sentence is translated into a logical form that contains
literals whose predicates stand for properties and relationships and whose variable and
constant arguments refer to entities specified or implied by the sentence. The logical form
is then proved abductively, with some or all of the variable values filled in from the knowledge
base and unprovable literals of the logical form assuied.

The motivation for this is the claim that what we should learn from a sentence is often
near the surface and can attained by assuming literals in the sentence’s logical form. For

example, when interpreting
The car is red.

with logical form
car{z) A red(z),”

we would typically want to ascertain from the discourse which car z is being discussed and

learn by abductive assumption that it is red and not something more specific, such as the

2 A logical form that insisted upon proving car(z) and assnming red(z) might have been used instead. We
prefer this more neutral logical form to allow for alternative interpretations. The preferred interpretation is

determined by the assignment of costs to axioms and assumable literals.



fact that it is carmine or belongs to a fire chief (whose cars, according to the knowledge

base, might always be red).

3 Assumption Costs

A key issue in abductive reasoning is picking the best explanation. Which one is indeed
best is so subjective and task-dependent that there is no hope of devising an algorithm
that will always compute [only] the best explanation. Nevertheless, there are often so many
abductive explanations that it is necessary to have some means of eliminating most of
them. We attach numerical assumption cosis to assumable literals and compute minimum-
cost abductive explanations in an effort to influence the abductive reasoning system into
favoring the intended explanations.

We regard the assignment of numerical costs as a part of programming the explanation
task. The values used may be determined by subjective estimates of the likelihood of various
interpretations or perhaps they may be learned through exposure to a large set of examples.

In selecting the best abductive explanation, we ofte.n prefer, when given the choice, that

certain literals be assumed rather than others. For example, when the sentence
The car is red.

with the logical form
car(z) A red(z)

is being interpreted, the knowledge base will likely contain both cars and things that are red.
However, the form of the sentence suggests that red(z) is new information to be learned
and that car(z) should be proved from the knowledge base because it is derived from a
definite reference, i.e., a specific car is presumably being discussed. Thus, an explanation
that assumes red(a) where car(a) is provable should be preferred to an explanation that
assumes car(b) where red(b) is provable. A way to express this preference is through
numerical assumption costs associated with the assumable literals: car(z) could have cost

10, and red(z) cost 1.



The cost of an abductive explanation could then just be the sum of the assumption
costs of all the literals that had to be assumed: car(a) A red{a) would be the preferred
explanation, with cost 1, and cer(b) A red(6) would be another explanation, with higher
cost 10.

However, if only the cost of assuming literals is counted in the cost of an explanation,
there is in general no effective procedure for computing a minimum-cost explanation. For
example, if we are to explain P, where P is assumable with cost 10, then assuming P
produces an explanation with cost 10, but proving P would result in a better explanation
with cost 0. Since provability of first-order formulas is undecidable in general, it may be
impossible to determine whether the cost 10 explanation is best.

The solution to this difficulty is that the cost of proving literals, as well as the cost
of assuming them, must be included in the cost of an explanation. An explanation that
assumes P with cost 10 would be preferred to an explanation that proves P with cost 50
(e.g., in a proof of 50 steps) but would be rejected in favor of an explanation that proves P
with cost less than 10.

Although treating explanation costs as composed only of assumption costs is conceptu-
ally elegant (why should we distinguish explanations that differ in the size of their proof,
when only their provability should matter?), there are substantial advantages gained by tak-
ing into account proof costs as well as assumption costs, in addition to the. crucial benefit
of making the search for a minimum-cost explanation theoretically possible.

If costs are associated with the axioms in the knowledge base as well as with assumable
literals, these costs can be used to encode information-on the likely relevauce of the fact or
rule to the situation in which the sentence is being interpreted.

Axiom costs can be adjusted to reflect the salience of certain facts. If @ is a car mentioned
in the previous sentence, the cost of the axiom car(a) could have been adjusted downward
so that the explanation of car(z) A red(z) that assumes red(a) would be preferred to one
that assumes red{c) for some other car ¢ in the knowledge base.

Indeed, the explanation that assumes red(a) should probably be preferred to any expla-

10



natjon that proves both car(c) and red(c) (i.e., there is a red car in the knowledge base—this
would be a “perfect” zero-cost explanation if only assumption costs were used), since the
recent mention of 2 makes it likely that « is the subject of the sentence and that the purpose
of the sentence is to convey the new information that a car is red—interpreting the referent
of “the car” as a car that is already known to be red results in no new information being
learned.

We have some reservations about choosing explanations on the basis of numerical costs.
Nonnumerical specification of preferences is an hnportant research topic. Nevertheless, we
have found these numerical costs to be quite practical. Numerical costs offer an easy way
of specifying that one literal is to be assumed rather than another. When many alterna-
tive explanations are possible, the summing of numerical costs in each explanation and the
adopting of an explanation with minimum total cost provide a mechanism for trading off
the costs of one proof and set of assumptions against the costs of another. If this method
of comparing explanations is too simple, other means may be too complex to be realizable,
since they would require preference choices among a wide variety of sets of assumptions and
proofs. We provide a procedure for computing a. minimum-cost explanation by enumerating
possible partial explanations in order of increasing cost. Even a perfect scheme for specify-
ing preferences among alternative explanations may not lead to an effective procedure for
generating a most preferred one, as there may be no way of cutting off the search for an
explanation with tlie certainty that the best explanation exists among those so far discov-
ered. Finally, any scheme will be imperfect: people may disagree as to the best explanation

of some data and, moreover, sometimes do misinterpret sentences.

4 Minimum-Cost Proofs

We now present the inference system for computing abductive explanations. This method
applies to both predicate specific and least specific abduction. We have not tried to incor-
porate most specific abduction into this scheme because of its incompleteness, its incompat-

ibility with ordering restrictions, and its unsuitability for natural-language interpretation.
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In predicate specific abduction, the assumability of a literal is determined by its predicate
symbol and assumption costs are specified on a predicate-by-predicate basis. In least specific
abduction, only literals in the formula to be explained are assumable, and their assumption
costs are directly associated with them.

The cost of a proof is usually taken to be a measure on the syntactic form of the proof,
e.g., the number of steps in the proof. A mnore abstract characterization of cost is called for.
We want to assign different costs to different inferences by associating costs with individual
axjoms; we also want to have a cost measure that is not so dependent on the syntactic form
of the proof.

We assign to each axiom A a cost cost(A) that is greater than zero. Likewise we assign
a cost cost{A) greater than zero to each assumable literal A. When looked at abstractly,
a proof is a demonstration that the geal follows {rom a set 5 of substitution instances of
the axioms, together with, in the case of abductive proofs, a set H of substitution instances
of assumable literals that are assumed in the proof. We want to count the cost of each
separate instance of an axiom or assumption ouly once instead of the number of times it
may appear in the syntactic form of the proof. Thus, a natural measure of the cost of the

proof is

> cost(A)+ D cost(A)

AceS AceH
Consider the example of explaining Q(z) A R(z) A S{z) with a knowledge base that

includes P(a), P(z) D Q(z), and Q(z) A R(z) D S(z) and with R being assumable by using

Prolog plus an inference rule for assuming literals:

1. <~ Q(x), R(x), S(x).

2. <~ P(x), R(x), S(x). Y resolve 1 with Q(x) <- P(x)

3. <- R{a), s{(a). ¥ resolve 2 with P(a)

4, <~ 3(a). %, assume R{a) in 3

5. <= Q{a), R(a). Y resolve 4 with S(x) <- Q{x), R{x)
6. <- P(a), R({a). Y resolve 5 with Q(x) <~ P(x)

7. <- R(a) Y, resolve 6 with P(a)

8. <- true Y, assume R(a) in 7

Q(z) A R(z) A S(z) has been explained with z having the value a under the assumption

that R(a) is true.

12



The cost of the proof is the sum of the costs of the axiom instances P(a), P(e¢) D Q(a),
and ¢(a) A R(e) D S(a), plus the cost of assuming R(a). The costs of using P(a) and
P(z) D Q=) and assuming R(a) are not counted twice even though they were used twice,
since the same instances were used or assumed. If we had had occasion to use P(z) D Q(z)
with b as well as a substituted for z, then the cost of P(z) A Q(x) would have been added
in twice.

In general, the cost of a proof can be determined by extracting the sets of axiom instances
S and assumptions J7 {rom the proof tree and performing the above computation. However,
" it is an enormous convenience if there always exists a simple proof iree such that each
separate instance of an axiom or assumption actually occurs only once in the proof tree.
That way, as the inferences are performed, costs can simply be added to compute the
cost of the current partial proof. (Even if the same instance of an axiom or assumption
happens to be used and counted twice, a different, cheaper derivation would use and count
it only once.) Partial proofs can be enumerated in order of increasing cost by employing
breadth-first or iterative-deepening search methods and minimum-cost explanations can be
discovered effectively. Iterative-deepending search is compatible with maintainiug Prolog-
style implementation and performance [14,15].

We shall describe our inference system as an extension of pure Prolog. Prolog, though
complete for Horu sets of clauses, lacks this very desirable property of always being able to
find a simple proof tree.

Prolog’s inference system—ordered input resolution without factoring—would have to
both eliminate the ordering restriction and add the factoring operation to remain a form
of resolution and be able to prove «— @, R from { — P, R — P, and P withoutl using P
twice. Elimination of the ordering restriction is potentially very expensive. For example,
there are n! proofs of — @4,...,Q, from the axioms ¢,,...,{, when unordered input
resolution is used, but only one with ordered input resolution. (Most specific abduction
performs unordered input resolution [11,4,5].)

We present a resolution-like inference system, an extension of pure Prolog, that preserves

13



the ordering restriction and does not require repeated use of the same instances of axioms.
Unlike Prolog, literals in goals can be marked with information that dictates how the literals
are to be treated by the inference system (in Prolog, all literals in goals are treated alike

~and must be proved). A literal can be marked as one of the following:

proved The literal has been proved or is in the process of being proved.?
assumed The literal is being assumed.

unsolved The literal is neither proved nor assumed.

The initial goa.l clause — @y,...,Qy in a deduction consists of literals @ that are
either unsolved or assumed. If any assumed literals are present, they must precede the
unsolved literals. Unsolved literals must either be proved {from the knowledge base, plus
any assumptions that appear in the initial goal clause or are made during the proof, or, in
the case of assumable literals, be directly assumed. Literals that are proved or assumed are
retained in all successor goal clauses in the deduction and are used to eliminate matching
goals. The final goal clause — Py, ..., P, in a deduction must consist entirely of proved or

assumed literals Pg.

4.1 Inference Rules

Suppose the current goal is — J1,..., &, and that {); is the leftmost unsolved literal. Then
the following inferences are possible.

Resolution with a fact. Let ¢ be a fact with its variables renamed, if necessary, so
that it has no variables in common with the goal +— @Q;,...,Q,. Then, if @; and @ are

unifiable with most general unifier o, the goal

*'_Qlo'y---aQno'

®In this inference system, a literal marked as proved will have been fully proved when no literal to its left

remains unsolved.

14



can be derived, where §;o is marked as proved.* The cost of the resulting goal is the cost
of the original goal plus the cost of the axiom Q.

Resolution with a rule. Let Q — P,,..., P, be a rule with its variables renamed, if

| necessary, so that it has no variables in common with the goal — @Q4,...,Q,. Then, if Q;

and ¢} are unifiable with most general unifier &, the goal
— Qho,....Qi1e, Pio,.. ., Pno,Qio,. ... Qno

can be derived, where ();o is marked as proved and each Po is unsolved.® The cost of the
resulting goal is the cost of the original goal plus the cost of the axiom ¢ — P,..., Pp.

Making an assumption. If @; is assumable in the goal — Q4,...,Q,, then

— Ql:---:Qn

can be derived, where ; is assumed.® The cost of the resulting goal is the cost of the
original goal plus the cost of assuming ¢;.
Factoring with a proved or assumed literal. If Q; and @; (7 < 7)7 are unifiable

with most general unifier o, the goal

- Qla: L) Qi—la: Qt'+10'1 ERE) Qna

can be derived. The cost of the resulting goal is the same as the cost of the original goal. In

addition, only when least specific abduction is done, ¢; can be eliminated by factoring with

4Each literal Qi or Qe in a goal resulting from one ol these inference rules is proved or assumed precisely

when Qi in the parent goal is, unless it is stated otherwise.
®Note that the resolution with a fact and resolution with a rule operations differ from Prolog’s

principally in their retention of Qo (marked as proved) in the result.
8The same result, except for ;’s being assumed, can be derived by the resolution with a fact operation

if assumable literals are asserted as axioms. The fiual prool could be examined to distinguish between proved
and assumed literals. Although using a fact and makiug an assumption can be merged operationally in this
way, we prefer to regard them as separate operations. Animportant distinction between facts and assumable
literals is that facts are consistent with the [assumed-to-be-consistent] knowledge base; assnmptions made in
an abductive explanation should be checked for consistency with the knowledge base before being accepted.

"(); must have been proved or assumed, since it precedes Q..
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@;, where (f > i) and @Q; is assumable; ;0 is assumed in the result. If @; was already
assumed in the original goal, the cost of the resulting goal is the same as the cost of the
original one; otherwise it is the cost of the original goal plus the cost of assuming @;.
Consider again the example of explaining Q(z) A R(z) A S(z) with R assumable from a
knowledge base that includes P(a), P(z) D @(z), and Q(z) A R(z) D S(z). Proved literals

are marked by brackets [}, assumed literals by braces-{}.

1. <- Q¢{x), R(x), S(x).

2. <= P(x), [Q(x)], RCx), s(x). % resolve 1 with Q(x) <- P{x)
2, <= [P{a)], [QCa)], R(a), S(a). % resolve 2 with P(=)

4. <- [P(a)], [QCa)], {Rr(a)}, s(a). ' % assume R(a) in 3

5. <- [P(a)], [Q(a)], {R(a)}, Q(a), R(a), [s(a)].

% resolve 4 with S{x) <- Q(x), R{x)
[(P(a)l, [Q€a)], {R(a)}, R(a), [S(a)]. % factor 5
[(P(a)], [QC=a)], {R(a)}, [s(al)]. % factor 6

-~ o,
AN
1 1

The abductive proof is complete when all literals are either proved or assumed. Fach
axiom instance and assumption was used or made only once in the proof. The cost of the
proof can be determined quickly by adding the costs of the axioms or assumed literals in
each step of the proof.

If uo literals are assumed, the procedure is a disguised form of Shostak’s graph construc-
tion (GC) procedure {12] restricted to Horn clauses, where proved literals play the role of
Shostak’s C-literals. It also resembles Finger’s ordered residue procedure [6], except that
the latter retains assumed literals (rotating them to the end of the clause) but not proved
literals. Thus, it combines tlhe GC procedure’s ability to compute simple proof trees for
Horn cla,us;es with the ordered residue procedure’s ability to make assumptions in abductive

proofs.

5 Future Directions

Many extensions of this work are possible. The most important to us right now are a more
flexible assignment of assumption costs and a procedure for dealing with non-Horn clause

formulas.
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5.1 Assumption Costs

The designation of which literals are assumable and the assignment of assumption costs are
niore rigid than we would like.

In predicate specific abduction, any literal with an assumable predicate is assumable,
but its assumption cost is fixed. For example, in interpreting the sentence “The man it
another man,” we would want to prove abductively a logical form such as man(z)Amen(y)A
hit(z,y) A ¢ # y. Predicate specific abduction would require that maen(z) and man(y) be
assumnable with equal cost; the definite reference for the first man suggests that man(y)
should be assumed more easily. |

In least specific abduction, only literals in the initial formula can be assumed. Although
this yields correct results in many cases, it is clearly sometimes necessary to make deeper
assumptions that imply the initial formula. When interpreting a piece of text, whicl includes

references to fish and pets, with logical form

fish(z) Apet(y)A---

we are forced to assume fish(z) and pet(y) if no fish or pets are in the knowledge base. But
we would really like to consider the possibility that £ and y refer to the same entity, i.e., a
pet fish, which we could have done, were it the case (according to our knowledge base) that
all fish are pets or all pets are fish, by assuming one and using it to prove the other. What

is needed are axioms like
fish(z) A fp(z) D pet(z) and pet(z) Apf(z) D fish(z)

where fp and pf are predicates expressing the extra requirements for a fish to be a pet
and a pet to be a fish. With the former axiom, fish(z) A pet(y) A --- can be explained by
assuming fish(x) and pet(y), as before, or by assuming fish(z) and fp(z), with pet(z) a
CONsequence.

Such reasoning requires that literals other than those in the original formula be assum-

able and that there must be a way of assigning assumption costs to them.
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The method we have adopted, which has not yet been fully analyzed and is described
more extensively elsewhere (8], is to allow assumability and assumption costs to be propa-
gated from consequent literals to antecedent literals in implications.

Thus, the implication
P AP DQ

states that P and P, imply @, but also that, if ¢ is assumable with cost ¢, then P
is assumable with cost w;c¢ and P, is assumable with cost wse in the result of backward
chaining from ¢ by the implication. If w; + w2 < 1, most specific abduction is favored,
since the cost of assuming P, and P; is less than the cost of assuming @. If wy + we > 1,
least specific abduction is favored: ¢ will be assumed in preference to P, and P,. But,
depending on the weights, P; might be assumed in preference to @ if P; is provable.
Factoring can also reduce the cost of assuming antecedent literals. When is ¢ A R is

explained from

P]/\szQ
PAPRDOR

the cost of assuming Py, P;, and P3 may be less than the cost of assuming {) and R, even

though A and P> cost more than (, and P, and Ps cost more than R.

5.2 Non-Horn Clause Proofs

Computing minimum-cost proofs {from non-Horn sets of axioms is more difficult and would
take us farther from Prolog-like inference systems. A mutually resolving set of clauses is a
set of clauses such that each clause can be resolved with every other. Shostak [13] proved
that mutually resolving sets of clauses (having no tautologies) with no single atom occurring
in every clause do not have simple proof trees. This result is true of the GC procedure as
well as of resolution. So, although we were able to use the GC procedure to compute siinple

proof trees for sets of Horn clauses, this cannot be done for non-Horn sets.
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For non-Horn clause proofs, an assumption mechanism can be added to a resolution-
based inference system that is complete for non-Horn clauses (such as the GC procedure or
the model elimination procedure that is implemented in PTTP [14]), with more complicated
rules for counting costs to compensate for the absence of simple proof trees.

Alternatively, an assumption mechanism can be added to the matings or connection
method [1,2]. These proof procedures do not require multiple occurrences of the same
instances of axioms. This approach would reduce requirements on the syntactic form of
the axioms (e.g., the need for clauses) so that a cost could be associated with an arbitrary

axiom formula instead of a clause.

6 Conclusion

We have formulated part of the natural-language-interpretation task as abductive inference.
The process of interpreting sentences in discourse can be viewed as the abductive inference
of what assumptions must be made for the listener to know that the sentence is true.
The forms of abduction suggested for diagnosis, and for design synthesis and i)lanning,
are generally unsuitable for natural-language interpretation. We suggest that least specific
abduction, in which only literals in the logical form can be assumed, is especially useful for
natural-language interpretation.

Numerical costs can be assigned to axioms and assumable literals so théfc the intended
interpretation of a sentence will hopefully be obtained by computing the minimum-cost
abductive explanation of the sentence’s logical form. Axioms can be assigned different
costs to reflect their relevance to the sentence. Different literals in the logical form can be
assigned different assumption costs according to the form of the sentence, with literals from
indefinite references being more readily assumable than those from definite references.

We presented a Prolog-like inference system that computes abductive explanations by
means of either predicate specific or least specific abduction. The inference system is de-
signed to compute the cost of an explanation correctly, so that multiple occurrences of the

same instance of an axiom or assumption are not charged for more than once.

19



We suggested, but have not yet fully developed, an approach that extends least specific
abduction to allow assumability and assumption costs to be propagated {from consequent lit-
erals to antecedent literals in implications. This is intended for cases in which our preferred
method of least specific abduction is unable to produce the intended interpretation.

Most of the ideas presented here have been implemented in the TACITUS project at

SRI [7,8].
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